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Abstract

The objective of this work is to use artificial neural networks (ANNs) for heat transfer analysis in corrugated

channels. A data set evaluated experimentally is prepared for processing with the use of neural networks. Back prop-

agation algorithm, the most common learning method for ANNs, was used in training and testing the network. To solve

this algorithm a computer program using C++ has been developed. The accuracy between experimental and ANNs

approach results was achieved with a mean absolute relative error less than 4%.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Artificial neural networks (ANNs) have been used in

many engineering applications because of providing

better and more reasonable solutions [1,2]. Some ex-

amples are: analysis of thermosyphon solar water heat-

ers, heat transfer data analysis, HVAC computations

and prediction of critical heat flux [3]. Sreekanth et al. [4]

for evaluation of surface heat transfer coefficient at the

liquid–solid interface, Diaz et al. [5] for simulation of

heat exchanger performance, Kalogirou [6] used ANNs

for performance prediction of forced circulation type

solar domestic water heating. Singh et al. modeled the

entire flow field around an automobile using ANNs and

Schreck et al. used ANNs models to predict the un-

steady separated flow field on a wing [4]. Farshad et al.

[7] for predicting temperature profiles in producing oil

wells used an artificial neural network algorithm. Re-

cently, Parcheco-Vega et al. [3,8] modeled the heat

transfer phenomena in heat exchanger systems using
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neural network. In addition, same authors performed a

simulation of the time-dependent behavior of a heat

exchanger [9]. Boccaletti et al. [10], for simulation of gas

turbine with a waste heat recovery section, Bechtler et al.

[11], to model the steady-state performance of a vapor-

compression liquid heat pump, and Sablani [12], for

non-iterative calculation of heat transfer coefficient in

fluid-particle systems, used ANNs. It should be under-

stood from the literature review mentioned above that

ANNs better serve to thermal analysis in engineering

applications. However, the ANNs methods have not

been used or tested for heat transfer analysis in corru-

gated channels yet. For this reason, the study was fo-

cused on the applicability of ANNs method for heat

transfer analysis in corrugated channels, employed in the

design of plate heat exchangers because of achieving

enhanced heat transfer, and the best candidate for high

heat flux applications.
2. Experimental details

A schematic diagram of the experimental apparatus

used for the heat transfer analysis in this study for

data gathering are presented in Fig. 1. A detailed
ed.
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Nomenclature

a corrugated height (from valley to peak)

ai actual value of the data

Acycle convection heat transfer area per cycle

Dh hydraulic diameter

H channel height

h cycle-average fully developed heat transfer

coefficient

k thermal conductivity

L length of the principal walls

n the number of the data

Nu cycle-average fully developed Nusselt num-

ber

pi predicted (output) value of the data

Qcycle heat added to fluid per cycle

Re Reynold number

Tb fluid bulk temperature

Tw corrugated wall temperature

V mean velocity

W width of duct

h corrugation angle

m kinematics viscosity

Subscript

fd fully developed

Fig. 1. The experimental apparatus.

Fig. 2. A corrugated type channel.

Table 1

Geometric data for the tested channels

h (�) S (mm) a (mm)

20 27.47 5.00

30 17.32 5.00

40 11.91 5.00

50 8.39 5.00
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presentation of the design, fabrication of the experi-

mental apparatus and evaluation method of the data are

available in [13–16].

Air from the laboratory room, the working fluid, was

drawn through the systems by a downstream fan that

was supplied the electrical power by the autotransformer

to use it as variable speed. The mass rate of air through

the systems were measured by the orifice plates. The DC

power supply was the source of power for the plate type

heaters, used for heating of the test section. Equal power

input per unit heated length was established in the top

and bottom walls. To prevent a temperature step be-

tween heater and principal walls, conducting compound

which fills in the air spaces and to provide improved

thermal contact was used. In order to measure the

principal walls temperature distribution, equipped with

six thermocouples the each walls, the thermocouples

were installed in holes drilled from the rear face and

centered of the walls. To measure the entering bulk

temperature, thermocouple was positioned upstream of

duct inlet. All thermocouples were K type, 0.2 mm
diameter wire (Comark, AK28M code). The thermo-

couple voltage outputs were fed into an autoranging

microvolt multimeter (Keithley, model 197).

Experiments were performed in the Reynolds number

based on channel hydraulic diameter, range 1200–4000

for four corrugation angle of 20�, 30�, 40�, and 50�.
Corrugated channels were fabricated from 10 mm thick

copper plates, 50 mm wide and 278 mm long. The form

of corrugation was accomplished by means of wire

electrical discharge machining. A representative corru-

gated channel was shown in Fig. 2, geometric data for

the tested channels were given in Table 1.
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The goal of this experiment was the determination of

fully developed Nusselt numbers for air flowing in cor-

rugated channel. The Reynolds number, independent

parameter based on the channel hydraulic diameter, is

given by

Re ¼ VDh

m
; ð1Þ

where (V ) is the mean velocity, (Dh) the conventional

hydraulic diameter,
�
Dh ¼ 2HW

HþW

�
, and (m) the kinematics

viscosity. The term H is the channel height and W the

duct width.

For a uniform heating condition the periodic flow

employed in the present experiment, the wall tempera-

tures at a succession of point separated from each other

by an axial distance S lie on straight line. Similarly, the

fluid bulk temperatures at the same set of axial points lie

on a straight line whose slope is equal to that of the

aforementioned wall temperature line and in periodic

thermally developed regime, the cycle-average heat

transfer coefficient is the same for all cycles [17].

The cycle-average full development heat transfer co-

efficients were evaluated from the measured tempera-

tures and heat inputs. The displacement of the two lines

yields the fully developed wall to bulk temperature dif-

ference. With heat added to fluid per cycle (Qcycle) and

the temperature difference of wall and fluid (Tw � TbÞfd,
cycle-average fully developed heat transfer coefficient (h)
will be evaluated from the experimental data via the

defining equation

h ¼ Qcycle

ðTw � TbÞfdAcycle

: ð2Þ

The term Acycle is convective heat transfer area per

cycle. Then, fully developed Nusselt numbers (Nu) are

evaluated by
Table 2

Periodic fully developed Nusselt numbers selected for training the ne

h (�) Dh (mm) S (mm) Re

1200 1600 2000

20 1.9 27.47 11.83 11.15 11.14

30 1.9 17.32 12.35 14.29 16.87

16.6 17.32 30.94 31.98 32.96

40 16.6 11.91 30.47 33.94 36.68

50 16.6 8.39 25.00 30.54 37.82

Table 3

The periodic fully developed Nusselt numbers selected for testing the

h (�) Dh (mm) S (mm) Re

1200 1600 2000

20 16.6 27.47 22.11 21.27 23.05
Nu ¼ hDh

k
; ð3Þ

where k is the thermal conductivity and Dh the hydraulic

diameter.

The results for the periodic fully developed Nusselt

number used for the training and testing data are pre-

sented in Tables 2 and 3, respectively. Experimental

uncertainty was estimated by the procedure described

Kline and McClitock [18]. The mean uncertainties in the

Nusselt numbers range between ±4% and 10% for

12006Re6 4000, the highest uncertainties being at the

lowest Reynolds number.
3. Artificial neural networks approach

ANNs consisting of very simple and highly inter-

connected processors called neuron are a computational

structure inspired by biological neural systems. The

processors are analogous to biological neurons in

human brain. The neurons are connected to each other by

weighted links over which signals can pass. Each neuron

receives multiple inputs from other neurons in propor-

tion to their connection weights and generates a single

output which may be propagated to several other neu-

rons [4].

Among the various kinds of ANNs that exits, the

feed forward neural network has become the most

popular in engineering applications [3], and it is the type

of network used in this study. The network is somewhat

simple in structure and easily analysed mathematically.

The back propagation network is the first and most

commonly used feed forward neural network because

there exists a mathematically strict learning scheme to

train the network and guarantee mapping between in-

puts and outputs. A typical feed forward architecture is
twork

2400 2800 3200 3600 4000

11.68 11.92 14.42 15.50 16.40

18.84 – – – –

34.30 37.50 39.15 40.73 44.32

35.98 34.60 40.54 40.36 40.87

44.00 50.00 55.21 53.72 57.86

network

2400 2800 3200 3600 4000

23.38 23.50 25.10 26.28 27.84
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Fig. 3. Configuration on a 4-5-1 neural network for heat

transfer analysis in corrugated channels.

Table 4

Comparison of experimental and ANNs results for Nusselt

numbers: testing results

Re Nu, experimental Nu, ANNs RE (%)

1200 22.11 24.31 9.94

1600 21.27 23.41 10.08

2000 23.05 22.90 0.63

2400 23.38 22.89 2.10

2800 23.50 23.42 0.36

3200 25.11 24.48 2.51

3600 26.28 26.01 1.02

4000 27.84 27.91 0.25

MRE(%)¼ 3.36.
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schematically illustrated in Fig. 3. This configuration has

one input layer, one hidden layer and one output layer.

During the feed forward stage, a set of input data is

supplied to the input nodes and the information is

transferred forward through the network to the nodes in

the output layer. The nodes perform non-linear input–

output transformations by means of sigmoid activation

function. The mathematical background, the procedures

for training and testing the ANNs, and account of its

history can be found in the text by Haykin [19]. Such

non-linear mapping capability and the fact that the

neurons are massively connected enable the ANNs to

estimate any function without the need of an explicit

mathematical model of the physical phenomenon. To

train and test the neural networks, input data patterns

and corresponding targets were required. In developing

a ANNs model, the available data set (70–80% of the

data [20]) is divided into two sets: the network was

trained using the first data set, and then it was validated

with the second data set [21]. The training process is

carried out by comparing with the output of the network

to the given data. The weights and biases are changed in

order to minimize the error between the output values

and the data for which the scheme used in this study is

the back propagation algorithm. The configuration of

the ANNs are set by selecting the number of hidden

layer and the number of nodes in hidden layer, since the

number nodes in the input and output layers are deter-

mined from physical variables.

The primary advantage of neural network method-

ology than conventional regression analysis is: free of

linear supposition, have large degrees of freedom, and

more effectively deal with non-linear functional forms

[7].

The inputs were corrugation angle (h), the axial

length of cycle (S), hydraulic diameter (Dh) and Rey-

nolds number (Re), and output was Nusselt number

(Nu). Neural network requires that the range of the both
input and output values should between 0.1 and 0.9 due

to the restriction of sigmoid function. The data evalu-

ated experimentally in this study are normalized in order

to have the values. The formula used is the following:

Actual value�Minimum

Maximum�Minimum
� ðHigh� LowÞ þ Low; ð4Þ

where minimum is minimum data value, maximum is the

maximum data value, high is the maximum normalized

data value¼ 0.9, and low is the minimum normalized

data value¼ 0.1 [22]. In order to decide the structure of

neural network, the rate of error convergence was

checked by changing the number of hidden layer and

also by adjusting the learning rate and momentum rate.

To facilitate the comparisons between predicted values

for different network parameters (the learning and mo-

mentum rate, number of training cycles, and group of

data set) and actual values, there is need for error

evaluation. The mean relative error (MRE) is calculated

according to following the expression:

MRE ¼ 1

n

Xn

i¼1

100jai � pij
ai

; ð5Þ

where ai is the actual value, pi the predicted (output)

value and n the number of the data.

Once training is completed, predictions from a new set

of data may be done using the already trained network.

To solve the back propagation algorithm a computer

program using C++ has been developed and all com-

putations were performed with a personal computer.

Model sensitivity was examined for four different

networks with 1, 5, 10, and 15 nodes in the hidden layer,

respectively. The network with a 5 nodes hidden layer,

both a learning rate and momentum coefficient of 0.6

was found to have the best performance. During the

training period the developed ANNs model, had a 4-5-1

configuration and 194,443 training cycles fit well with a

MRE less than 3% and less than 4% for the test/vali-

dation period, in agreement (<4%, mean absolute rela-

tive error) with those evaluated using experimental

technique. Table 4 and Fig. 4 show that the error values
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Fig. 4. Nusselt number from training result evaluated using

ANNs.
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are in the range 0–11%. The maximum relative errors

were approximately 8.27% (from Fig. 4) and 10.08%

(from Table 4, and the MREs were 2.45% and 3.36%),

respectively.
4. Conclusion

In this study, ANNs model was developed for the

analysis of heat transfer. Results indicate that the ANNs

model can be trained to provide satisfactory estimations

of Nusselt numbers for air flowing in corrugated chan-

nels. It should be advised that in preliminary engineering

studies, the networks can be used an easy-to-use tool for

engineers.
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